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ABSTRACT 

A comprehensive discussion is given of the renormalization of 

gauge theories, with or without spontaneously breakdown of gauge 

symmetry. The present discussion makes use of the Ward- 

Takahashi identities for proper vertices (as opposed to the identities 

for Green’s functions) recently derived. The following features of the 

present discussion are significant: (1 ) The present discussion applies 

to a very wide class of gauge conditions; (2) The present discussion 

applies to any gauge group and any representation of the scalar fields; 

(3) The renormalized S-matrix is shown to be gauge independent; 

(4) Dependence of counterterms on the gauge chosen is discussed. 
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I. INTRODUCTION 

In an earlier publication, 
1 

we have given a derivation of the Ward- 

Takahashi (WT) identity for the generating functional of proper vertices 

in nonabelian gauge theories. Previous discussions on the renormaliz- 

ability of gauge theories 
2-5 were based on the Ward-Takahashi identities 

for Green’s functions. 687 The renormalization procedure is usually 

stated in terms of proper vertices, so that the WT identities for proper 

vertices would facilitate enormously the discussion of renormalizability. 

In this paper we shall re-examine the renormalizability of gauge 

theories in terms of the WT identities for proper vertices. In addition 

to rederiving many results of Refs. 2, 3, 5 (which we shall refer to as 

LZI, LZII and LZIV respectively), we shall add the following elements 

to our discussions: (1) We shall discuss the renormalizability of gauge 

theories in a wide class of gauge conditions. The gauge conditions we 

shall consider are linear in field variables and of dimension two or less. 

Most gauge conditions considered in the literature 4,5,8 are of this kind. 

(2) We shall consider all possible gauge symmetries based on semi- 

simple compact Lie groups. Thus, the gauge symmetry G is assumed to 

be a direct product of n simple groups Gix G2 . . . xG.,. Our discussion 

will apply also to groups which are not completely reducible (i. e., to 

groups in which the product of two irreducible representations R and R’ 

contains a third R” more than once). We consider arbitrary representatil 
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for scalar fields under G. We shall consider theories consisting of gauge 

vector bosons and any number of scalar bosons. In an anomaly-free 

ii 
gauge theory 9,10 spinor fields do not present any new problems , and 

may be treated in much the same way as scalar fields. 

(3) We shall show that the renormalization procedure leads to the same 

renormalized S-matrix irrespective of the gauge chosen in spontaneously 

broken gauge theories (SBGT). 

(4) Dependence of renormalization counterterms and constraints on the 

gauge chosen is studied. 

In our discussion of renormalizability, we shall be deliberately 

unspecific as to the finite parts of mass renormalization counterterms .and 

the,finite multiplicative.factors of renormalization constants, SO as to make 

the discussion free from any specific renormalization conditions one 

might adopt. There is a price to be paid for this, and it is that one 

must regularize the theory first in order to give a sensible discussion. 

We will adopt the gauge invariant dimensional regularization method of 

It Hooft and Veltman, 
12 in the form discussed in Ref. 13. 

In Sec. II, we review the WT identities for Green’s functions, and 

for proper vertices. In Sec. III, we discuss the renormalization trans- 

formations of field variables and parameters of the theory and study their 

effects on the WT identities for proper vertices. In Sec. IV we discuss 

the renormalizability of unbroken gauge theories in the so-called 

R-gauges. 2,3 This discussion supercedes that of LZI. In Sec. V, the 
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consideration of the preceding section are extended to arbitrary linear 

gauges. Section VI is a discussion of the renormalizability of SBGT in 

any linear gauges, and augments that of LZII. Section VII is an 

elaboration on the gauge independence of the renormalized S-matrix in 

SBGT. 

II. WARD-TAKAHASBI IDENTITIES--A REVIEW 

2. 1 Notations 

In discussing gauge theories, unless we agree on a highly condensed 

notation, we are apt to be defeated by the complexities of indices. For 

this reason, we shall agree to denote all fields by di. The index i stands 

for all attributes of the fields. For the gauge field b;(x), i stands for the 

group index cy, the Lorentz index a, and the space-time variable x; for the 

scalar field $,(x), i stands for the representation index a and x. Summation 

and integration over repeated indices shall be understood in this section 

unless noted otherwise. The infinitesimal local gauge transformations of 

I#I~ may be written as 

‘i -4; = $i+(ll;+tl;~j)W(y 

where w = a wQ(xa) is the space-time dependent parameter of a compact 

Lie group G. We choose a real basis for $i so that the matrix 

(tQ)ij = t: is real anti-symmetric. The inhomogenous term Arin (2. 1) 

is of the form 
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4 
8 h4(x-xu). for $i = b:(x) 

P 
(2.2) 

=o , otherwise. 

where g up =%BQp 
is the gauge coupling constant matrix. If the group 

G is a direct product of n simple groups G1 x G2 x . . . x G,, there are 

in general n gauge coupling constants gl, g2, . . . gn. Within the same 

factor group Gi, we have of course gLy = gp. 

We have 

tLYo.$. +A$ti;(tk;6j +A;) lk kJ J 
(2.3) 

=foPY(t$$j +ny, 

where faPY IS the completely anti-symmetric structure constant of the 

gauge group. The invariance of the Lagrangian under the gauge trans- 

formation (2.1) may be formulated as 

(lli” +Qj)+-p =o. 
1 

(2.4) 

2. 2 Feynman Rules 

To quantize the theory, we shall choose a gauge condition linear 

where 

FLY[ 4 1 F Fai$i = 0 (2.5) 

Fai=%gcrp 1 
A!3 (not summed over a), for bi = b:(x), 

(2.6) 
(not summed over a), for $i =+,(x) . 
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We shall be dealing with the case in which c” is a numerical constant. 

In Eq. (2.6) 5, is a positive numerical parameter which can be varied. 

The Feynman rules for constructing Green’s functions can be 

deduced 
14 

from the effective action Leff: 

Leff[e.c,ct]=L[~l - $(F~[$~f2+c; M,&lcp (2. TI) 

where c t cy and c 
P 

are fictitious anticommuting complex scalar fields which 

generate the Feynman-de Witt-Faddeev-Popov ghost 15,16,17 
loops, and 

Map[ C#I 1 is given byi 

M,@ = 
bFa[$l 

6 $i 
(nP+tQ.)g 5 -+ 

1 ij 3 P (y 

= F&;+t; $j,gpb, (2.8) 

(not summed over (Y, p) 

The operator MQP [ e 1 is in general not hermitian, so the ghost lines are 

orientable. 

2.3 Green’s Functions 

We shall be dealing with unrenormalized, but dimensionally 

regularizedI quantities (dimension of space-time d=4- E). The generating 

functional of Green’s functions 

W,[J] = 
/ 

[d$dcdct]expi(kff[e,c.ct].tJi~i} 

satisfies the Ward-Takahashi (WT) identity: 2,4,6,7 
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(- F,[; &] + J&A; +tlpj ; +) M-l& $11 

x W,[Jl =o. 

In (2.9 ) the quantity 

(2.9) 

is the Green’s function for the fictitious field c in the presence of the 

external source J. 

An important consequence of Eq. (2.9) is the elucidation of the 

effects on Green’s functions of the change in the gauge fixing condition 

(2.5). When F is changed infinitesimally by AF, the change induced 

in WF may be viewed as a change in the source term: 

WF+AF [ J 1 =j[ d $dcdc 1 expi Leff [ $1 I (2.10) 

or, 

+J. [$. +(n?+tP.$.,d 
11 1 LJJ P@ 

[b]AF 1 
Ly 

J.4. F-F+L\F_ 
1 1 +(A!3+tP’&)M-i 1 ijJ Pa b]AFa] (2.11) 

: .2> 4 Proper Vertices 

The generating functional of proper (i. e., single particle irreducible) 

vertices r [@I is given as usual 18 by the Legendre transform: 

W[JI =exp 

r[d =Z[Jl -JiQi , (2.12) 

where 
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Qji = 6Z[Jl /aJ. 
1 

(2.13) 
Ji = - 6l?[ @,I /6Q. 

1 

The expansion coefficients of ~I [ ~1 about its minimum CD = v 

0 = 6I- [ml/am. 
l f$=v. 

(2.14) 

1 

are the proper vertices from which Green’s functions are obtained by the 

tree diagram construction. 

For later use we define Aij [@I by 

Aij[“l = -6mi/6Jj > (2.15) 

Aik [@I ~5~I-l Ql /bQk6mj = 5 ij > 

1. e., Aij [ ~1 are the propagators when the fields e are constrained to 

have the vacuum expectation values @. 

It was shown elsewhere1 that I [ ~1 satisfies the W’T identity: 

LaiL~l&ro[~l =o 
1 

(2.16) 

where 

r[ml =r,[@l - $ (Fu[ml)2 (2.17) 

and 

Lai[rnJ =aq+g@P(+j+Y;[Ql ’ 
) (2.18) 

P y”[@,] = -itijAjk[@l GPv [ml + G;; [@I . (2.19) 
k 

In (2.18) we used the symbol 8: : 
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a:= 6 
QPP 

a 6(xa-xi), for 4i = b; , 

=o , for $ = * CY 

In (2.191, G pi [@I is 

Gpa[ml =Meip [@+iX&l 1 (2. 20) cz 

and is the generating functional of proper vertices with two ghost lines, 

so that 

G$ Z G-ipiu[vl 

is the inverse ghost propagator, and 

-1 

ypO,i’ 1 > [VI 

is the proper vertex of two ghosts at p and LY and the field at i, and so on. 

Furthermore, it follows from (2. 20 1 that 

G-‘gabl = FPiLQi[P,l $ 
-+ 

(not summed over p) (2. 21) 

In Fig. 1, we show a diagramatic represetiation of (2. 19). 

III. RENORMALIZATION TRANSFORMATIONS 

We shall proceed to the renormalizability of gauge theories on the 

basis of our master equation (2. 16). As discussed in LZII and as we 

shall discuss in Sec. VI, the renormalizability of the unbroken version 

of a gauge theory implies the renormalizability of its spontaneously 

broken version which is obtained, for example, by manipulation of the 
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(renormalized) quadratic coefficients of scalar fields in the Lagrangian. 

Thus, we shall discuss in Sets. III, IV, and V only the unbroken theory. The 

Lagrangian of the theory is written as 

L = _ +( a ba _ 
P v avbF + g c6f6h+,;)2 

+?_(a + 
2 pa 

-tzbg “13b; $b)2 (3.1) 

- v(+, A, M2 + 6M2) 

where V is a G invariant local quartic polynomial of the scalar fields $J, 

A stands collectively for the coupling constants of scalar self-interactions 

and M2 is the renormalized mass matrix which is assumed to be positive 

definite. The potential V is bounded from below for all real $. 

In the following, we shall assume that the potential V is invariant 

under + - - $J, so that cubic terms in + do.not appear. This does not 

cause much loss of generality, because the insertion of cubic interactions 

in a vertex diagram which has the superficial degree of divergence D-0 

renders it superficially convergent. That is, the divergent parts of gauge 

boson couplings, quartic scalar couplings, and couplings of scalar and 

gauge bosons are not affected by cubic interactions of scalar fields. The 

presence of cubic terms does affect the renormalizations of scalar masses 

and cubic scalar couplings themselves, but these can be carried out without 

reference to gauge invariance of the second kind. 

Our task is to show that the derivative r[Ql about its minimum can 

be rendered finite (i.e. , independent of E as E + 0) by resealing fields, 
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coupling constants and Frri in (2.7) (in the following we will suspend the 

summation-integration convention): 

C = 2p?; c 
t rl = c 

a a Ly (Y 

$i = zfMm;: 

b; = Z; (e)b;? qJ, = z+pr I a 

ga =gaXak)z~(E)Z~LL 

A abed = (‘abed + 6 ‘abed )[Za(E)Zb(E)Zc(E)Zd(E)I -+ I (3. 2) 

and 

or 

Fei = Zi’ Fzi : (i not summed) 

Fzi = c 6@@ 8p64(xLy-xi), for ei = b; 

(3.3) 

and by choosing 6 M2ab(t ) appropriately. The wave function renormalization 

constants Zi are assumed to satisfy 

The c number fields mi transforms covariantly to $i (and Ji 

contragrediently) under the transformation of (3. 2): 



-12- NAL-Pub-73/71-THY 

s f mi = Zi air, Ji = Zi-- Jirs (3.5) 

Note that the rules of Eqs. (3.2) and(3..3lleave the gauge fixing 

term in r invariant: 

F,[Ql = F’-, [@I = Fzi m.r 
1 (3.6) 

We shall study now how the master equation (2.16) changes under 

the transformations (3. 2) and (3.3 1. We shall confine ourselfves to the 

so-called R-gauges, 2, 3 characterized by c,” =O. In these gauges, the 

effective action (2.7) is invariant under the G-transformations of the 

first kind, so that we may write, for example, 

Gpu[Q] ga = gpGpa [@I 
((Y, p. not summed1 (3.7) 

Gp~[ml “z-’ c? = 2;’ Gpa[Q 1 

First we observed from (2. 15) and (3. 5) that 

Aij = Zt Airj Z; 

(3.8) 

A;jIml = -6m;/b Jf. 

We define G r by 
Pa 

GPQ 
[a 1 = zp Glf,bl = Gp;[@l z 

a 

Then, Eq. (2.16) takes the form 

(3.9) 
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LZi[ 81 -L 
6 a; 

rl[m’l = 0 

where 

and 

Lai [ml = 2-l z-fz! LJii[ $1 
a (1 

(3.10) 

(3.11) 

so that 

L~~[cCI =Ema~+g~x~&ti~m~+~. ( 
&-) WI) , (3.12) 1 

J 

4r )= 
6 G(‘)-*hr] 

‘i 
-i c tFkA,‘; [Qrl G(fy [Qrl pa . (3.13) 

k,j,l%a 6 @f 

(Since we have suspended the summation-integration convention, we note 

the summation and integration over a catch-all index cy by c ). Thus, 
(I 

from the definition (3.9) and Eq. (2.21) we have 

G;;-‘,[$] = c Fpri Lii [@rl$,$ 
i 

or, in the R-gauges 

(3.14) 

G(r j-1 
Pff [mrl =Zaa26ap+gzxcuC aq(ztG mf+y~(‘)I} (3.15) 

1 j 
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IV. RENORMALIZABILITY--R-GAUGES 

We are now in a position to show that all divergences in proper 

vertices can be eliminated by the resealing transformations of (3. 2) and 

(3. 3). We shall do this first in the R-gauges in this section; this dcmon- 

stration will then be extended to arbitrary linear gauges in the next section. 

We will develop the perturbation expansion of proper vertices, 

starting with the unperturbed Lagrangian given by 

+ 
c 

a 
c(;)+azc(ar)+; [; (a& - Fb lit; Mtb+;]. (4-*’ 

We expand proper vertices by the number of loops a Feynman diagram 

contains. 

Suppose that our basic proposition is true up to the (n-i) loop approxi- 

mation: i.e. , up to this order, it has been shown that all divergences are 

removed by resealings of fields and parameters and ad,justing mass counter- 

terms in the Lagrangian as discussed in the last section. We suppose 

that we have determined the renormalization constants and counterterms 

up to the (n-i ) loop approximation: 

Zi(E)=. l+zil(F’+... +Zi(n-l)k’ I 

z&E)= i+z&‘f... +!z Lu(n-i )( e ) ’ 

X@(E)= l+Xwi(E’+... +x 
&i-i)(c) ’ 
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6NE) 2 6X1(E) + 6X2(E) + . . . + 6X,-,k’, 

6M2(e) = 6M;(e)+... + 6M2 n-&E’ - (4.2) 

We wish to show that the divergences in the n-loop approximation are 

also removed by suitably chosen zin( E ), Tan( E ), xrun( E ), b An( E ) and 

EM;. This inductive reasoning makes sense starting fron n=l, since 

n-i = 0 then corresponds to the tree approximation where there are no 

divergences. 

Let us now consider a proper diagram with n-loops, and carry out 

i9 the BPH renormalization. Since any subdiagram contains at most 

(n-l) loops, the divergences associated with any subdiagrams is removed 

by the previously determined counterterms. To make an effective use of 

Eq. (2. 16) we must also construct Lzi[mr 1 up to this order. In this 

4r ) connection we must remark at this point that yi defined in (3.13) con- 

tains divergent subdiagrams shown in Fig. 2 by a shaded square. Such 

divergent subgrams arise from a two-particle cut in d G ;prn;. 

As we shall establish, the divergence associated with such a subdiagram 

a(r) is :removed by X . 
P 

Thus, lower order terms in X a multiplying yi 

in (3.12) will remove such divergences, since these subdiagrams contain 

at most n-l loops. 

In order to obviate infrared divergences, it is prudent to choose 

as the subtraction point for n-pointy proper vertices the point at which 

pt = a2, pi*pj = a2/(n-1). We may write down the proper vertex as sum 

of terms, each being the product of scalar function of external momenta 
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and a tensor covariant, which is a polynomial in the components of external 

momenta carrying available Lorentz indices. Except for the scalar self- 

masses, all other renormalization parts have D=O, or 1. (As we shall 

see, the self masses of gauge bosons are~purely transverse in the R- 

gauges, and therefore have effectively D=O: the latter is also true in 

other linear gauges, as we show in the next section). Thus only the 

scalar functions associated with tensor covariants of lowest order are 

logarithmically divergent. If we expand such a scalar function about the 

subtraction point, only the first term in the expansion is divergent. Among 

the vertices derived from Levi [@I only the two- and three-point vertices 

are linearly and logarithmically divergent, so the same remark applies, 

here too. ( The reader is invited to verify this statement and that the 

four-point vertices derived from Lai[@l are superficially convergent ). 

Thus when we discuss the relationships among the divergent parts of 

proper vertices, we need focus only on these terms. 

Equation (3. 10) contains all possible relationships among proper 

vertices which follow from gauge invariance of the second kind. To make 

use of this equation it is convenient to resort to a diagrammatic approach. 

We shall represent (we will drop the superscript r; all quantities and 

equations are renormalized ones. ) 

6(n)Lai [ml 
6 ‘j . * ’ 6@k ’ Lai.j k 

I . . . 

P=v 

(4.3) 

as in Fig. 3, and 
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Pr [ml 
drni.. . mj GITi**. .l (4.4) 

Im=v 
as in Fig. 4 (in the present case, v=O). We shall use the notation 

ai = Ba as 
CL 

bi =b; 

Qi =* as 
a di =4Ja 

Equation (3. 10) may be represented diagrammatically as in Fig. 5. 

,In examing (3.10) in the n-loop approximation, the following 

simplification will be noted. In the n-loop approximation, we have 

{Laijo Z+ (IO/, + jLei/n + (rO/o 

(4.5) 

where 
1 I 

m denotes the quantity evaluated in the m-loop approximation. 

Since the right-hand side of (4. 5)involvesonly quantities with less than n 

loops, it is finite by the induction hypothesis. Thus, we have, denoting 

by 
I I 

div 
the divergent part, 

/beg/, e /roldniv +]Lai/F e {I?o/o =finite (4.6) 

which means that the left-hand side is independent of E as E -t 0. By 

differentiating (4.6) with respect to @ N-times, and setting Q = 0, we 

obtain equations connecting r. ] I . . . j/T ,and lLai; j . . . kp? 

We need consider five equations which follow from (3.10). These 
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equations are shown in Fig. 6(a)-(e). We distinguish here the vector 

boson lines (wiggly lines) and scalar boson lines (straight lines). Note 

that any vertex with an odd number of scalar lines vanishes in the R- 

gauges. 

(a) Lei 6 ap r. &p) be the Fourier transform of G2rO/6p~.6B~, 
.O 

and 6 p 
QP IL 

Aa(p2)the Fourier transform of Lai [@ = 01 for 6, = bp . 
1 IL 

Then we have 

6 a2 P P 
cup* (P )P r o~v (P) = 0 I 

which shows that I? (p) must be transverse: 
II’ 

ra oJP) = (gcLgz - PpPp,llrg (P2). 

Both{ rz (p2)yFand (A”(p2))~” are made finite by wave function 

(4.7) 

(4.8) 

renormalizations, i.e. , by counterterms z and z because cyn an ’ 
(*“(p2)} f”= A’( -a2) + Em, etc. 

(b) Equation (4. 6) corresponding to Fig. 6(b) is 

PyA@(P2)}y+;,“‘V (p,q,r)}O +P”(A”(P~))~ {.l?Tp,‘v (p.q,r))z 

+ a L ~(yu);(pll)(P’r;q)}~v(g uvr2- rurv) 

+ 
c( 

L 
@(Y o);(Pp*) (p,r;q)} 0 (go vr2-ror “j (7r2(r2))dA = finite, 

(a and y not summed), p+q -f. r = 0 j (4.9) 

where the quantities r aPv 
x clv (P, q,r) and L (y (P~);(~ ,,)(@, q:r 1 are defined 
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c 

, 
in Fig. 7, and means sum over the terms gotten by the interchange 

(9, t-b P) -- (r, v, y). 

The first and the last terms on the right of (4.9) are finite by the 

renormalizations performed in (a), so we have 

A 
P ‘i f,“r (p,g.r)}y + 

+ L (4.10) 

From Lorentz invariance and a remark made previously, we have 

i r:“,T (p,q,r)) div = g+Eap,, + bq,,+ =-,,I 
n 

=gPv[alPh+btqxfcrX] 

= gy x [alp + b”q + c”ri 
I* P 

where a = aLYpy(e); etc., are constants, and 

i 
L cy(pp);(yv) (p,q,r) y = gp y Lqpy(~) 1 

(4.11) 

(4.12) 

We ask under what circumstances px I?;“,: (p,q,r)}div can be a linear 

combination of (g r2 
PV 

- rpr J and (g TV q2-ylJ. It turns out that it 

can happen only if 

+gJLY(q-r)h+gyXCr-p)~ +B~ypy(E)(gXgV-gy,p~) c4*i3) 1 
Now the Bose symmetry applied to the three-point boson vertex tells us 
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that 

and 

A &E’ = - A PLyyk) = -A *yp (4. 14) 

1.e.) A 
aupv 

is completely antisymmetric in (Y, p, and y. Furthermore 

Eq. (4.10) shows that we can adjust the finite part of A 
@PY 

(E) so that 

A &E’ = Lapyk) (4.15) 

(c) Consider now the relation depicted in Fig. 6(c). In the equation 

which deals with divergent parts, a derivative of (4. 6), the last term on 

the left-hand side of Fig. 6(c) does not contribute because 

L 
(U(Pp);(yt)(6 p) 

is not a renormalization part for n 2 1 and = 0 for 

n=O. Since 

i 
L 

a(Pp’;(yd 1 o = 
f 

“PYgPv ’ 

-i 
r”PY 

Xpv(~.9.r) o =fcupy > i 
gxpb-9)v 

+ gpv(q-r\* gyA(r-p)p j > 

we have 

f 
ffPc 

r + L 
@PC 

r 

+ [cyclic permutations of (q, p, A), (r, y. p), (S, 6, Y)] 

+p”r -I 
0P-f 6 uxpu b,q,r,s) “I, > = finite 

(4.16) 

(4.17) 
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From Lorentz invariance and power-counting arguments, we have 

In (4.171, the term v>r {IJzFz zjO does not appear because the first 

factor is finite by the wave function renormalization zOn. Consider the 

terms proportional to (q-rJV in Eq. (4. i7), taking into account (4.14) 

and (4.15). The last term on the left-hand side of (4.17) doe s not 

contribute. Equation (4. 17) tells us that the finite part of L 
0 PY may 

be adjusted so that 

( [f! LYl - CfY, LPI 
> 

Cub 

= fd LP + LdfP 
( ) ‘YY ’ 

where (fP) = fapy, 
‘YY 

(LpjQy = Lapy(e). Sinc,e 

Cf”, LP]=f LY, 
UPY 

as follows from the fact that L 
QPY 

is a G-invariant tensor operator, we 

fpy, LEa6 =fad E 
L 

EPY - 
(4. 18) 

By multiplying Eq. (4.18) by f 
PYW 

and summing over p and y. we find 

that 

L nPy(~) =Da(~)fn.py, (cunot summed) (4.19) 

where 
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Da(c) = fJdC2 
c p yfoPYfwY = 

6 
*bC2 

c 
P>Y fapy L6PY 

(El = 6 a6EcU(~ 1. 

[ Equation (4. 14) is sufficient to establish (4.19) for well-known groups 

such as SU(2) and SU(3), but the point of this demonstration is to avoid 

too much reliance on group theory. 1 
Since DCY( E ) is of the form 

Da(e) = D;(E) +xrun(e) (4.20) 

we can choose X cyn to cancel the divergent part of D ’ : L (ypy(~) is 

made independent of E as E + 0 by SO doing, and so rs (r~~~}~v, 

by (4. 13)-(4. 15). 

Actually, Eq. (4. 17) contains information on (rz,P yY;}y as well. 

However, it is not necessary to dwell on it here. 

(d) First of all, the inverse scalar propagators are made finite 

by d M2(~e) and za(e ). Now look at Fig. 6(d). The treatment of this 

relation proceeds in much the same way as that of Fig. 6(b). If we 

define (see Fig. 7 for the definitions of I’ aab and L aab 
) 

L rua b(p;q, r d;=S;b(t), 

where Tcu 
ab 

and M” ab are divergent constants, we find that 
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T:b (E 1 = qbk ), (4.21) 

SZb = -eb# (4.22) 

and 

[ 8, M21 ab = 0, (4. 23) 

where M 2. IS the scalar mass matrix. 

(e) The relation depicted in Fig. 6(e) can be processed similarly 

to (c) above. Making use of (4. 21), (4. 22) and 

I 
r a:b(p; q,r) o 

I 
= (q-r)wtzb, 

L @ab 
(p;q, r) o = tzb # 

I 

[t”,sPlab =faPySLb’ 

one finds that 

S;b(~) = Da (e) tzb , ( LY not summed) . (4;;24) 

Thus the 

E made in (c) above [ see Eq. (4. 20) et seq. 1 

choice~::“y;: d,, ILea bin ,finite. 
will make both r 

Let us summarize the results so far. We have shown that by suit- 

able choices of 6 M2(e ), Zi( E ) = Z@(E ), Za( E ) , zU(e ) and X0( E ), all 
I 

two-point and three-point vertices derived from r. IQ 1 and Lki [ CPl 

can be made finite. More importantly, since only the two- and three- 

point vertices of L,iIQl are renormalization parts, 
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made finite by the above counterterms. (We shall restore the super- 

script r for “renormalized” from here. ) 

Therefore, from (4. 6), we find that 

~{L;ilm’Ijo --& ]r; rmr,/ y=o 

1 

where, from (3. 12), 

1 LcFi [@‘I o = +g;Ct;m; I .I 

(4.25) 

(4. 26) 

must be a local functional, at most quartic in Q 
r 

, 

Eq. (4. 25) can be solved. The solution is 

{ri[@rlidniv=/d4x/ - ~,~PB~(r)- RyBU:P)+g~frrpyB&(t)BVy(r))2 

+ ; (a *r - tzb B;(r)m;)2 
II a 

(4. 27) 

wherev’is a G-invariant quartic polynomial in qr where coefficients 

depend in general on l . After the renormalizations outlined in (a) - (d) 

above. 

A=B= &f2$ [ol = 0, 
a b 

so the remaining divergences lie in the quartic couplings. But these 

divergent quartic couplings are G-invariant, so that the set 6 A( E ) 
I I 

which contain all possible quartic couplings will eliminate these divergences. 

We have shown that the scale transformations (3. 2) make 
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l?i[@rl finite in each order of loopwise perturbation theory in the R- 

gauges. Further, from (2.17) and (3.6), we find that 

rrIarl = ri[dl - $ FCc[arl 2 
1 I 

is finite in this gauge. 

V. RENORMALIZABILITY--LINEAR GAUGES 

We shall now extend the discussion of the last section to arbitrary 

linear gauges discussed in Sec. 2. First notice that 

Leff( 5 9 c ) - Leff (C,O) = - + x28’b;c a”Ga 
1 ff, a 

‘zf-(&‘:*a)“[‘z ’ L (< ~c~t,Pb~b)cp I”” 
where Leff(~, c) is the ff t e ec ive Lagrangian considered as a function 

of gauge fixing parameters t; cy and c z . We note here that c ,” is of the 

form 

C (y = tzbA;> t (Y not summed ) 
a (5.2) 

where ALY a is a constant vector in the space of a, and Aa ff = Ai if (Y 

and p belong to the same factor group. 

Equation (5. 1) tell us that the difference between the effective 

Lagrangians in the R-gauge and the general linear gauge for the same 

5 Ly is a sum of terms of lower dimensions (5 3). It follows from this 
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observation that the insertion of vertices that appear on the right hand 

side of (5.1) in a vertex diagram of D = 0 will make the diagram super- 

ficially convergent. This means that the counterterms (Z. - I), (z,- 1) 
1 

(Xa - 1) and 6 X defined in the last section [for Leff( 5, 011 will render 

finite these vertices. 

Thus our task is to show that the divergences in vertices of lower 

dimensions are either absent, or, if present, may be removed by a 

gauge-invariant manipulation. The possible candidates for divergent 

vertices of lower dimensions are the b2 - , Q8’lb 
P CL 

- , G3 - and $2 - 

vertices and the +-vacuum transition. Note that the invariance rl, + - 4 

is broken by terms on the right hand side of (5.1). 

The fact that (J can develop nonvanishing vacuum expectation 

values, even when ML> 0, in a general linear gauge is of importance 

here. These vacuum expectation values v arise from loops, and must 

be determined from the solutions of 

brr[dl 
=o (5.3) 

m; Gr= v,B’ =o 
II 

Proper vertices in the general linear gauge are given by variational 

derivatives of rr[ar I with respect to arevaluated at ar 5 v. Alternatively, 

the proper vertices may be obtained by writing 

c = p +va (5.4) 

and defining the c-number fields Q? ‘(r 1 
a as the expectation values of 
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p (r 1 
a 

In the presence of the external sources J , and expanding 

I? [m i about “‘a (r) = 0 and j@-)= 0 
P * 

The quantity va in (5.4) is to be 

determined by the condition that JI, 1 not have vacuum expectation values. 

In perturbation theory 

V =xv a al +x2v a2 +... , 

where x is a fictitious expansion parameter (x = 1) of the loop-wise 

perturbation expansion. When Eq. (5.4) is substituted in the effective 

Lagrangian, there will emerge a number of new terms. One of them is 

a linear term in +i with a coefficient which is a function of v 
a’ 

This 

term must serve as the counterterm to cancel $la - vacuum diagrams 

(the so-called tadpole diagrams). This requirement will fix v an’ 

There will also appear quadratic and cubic terms in 4 by this 

substitution. 

We shall proceed inductively as in the last section: we shall 

assume that up to the (n-l) loop approximation Z. 1, z,, Xa, and 6 A 

as determined in the last section, a suitable choice of 6M2(gr, cr) 

satisfying 

[6M2$, cr), tqab = 0 2 (5.5) 

determined up to this order, and 

V =v +v +... +v (5.6) a al a2 ah-1 )’ 

remove divergence from renormalization parts, and shall show, based 

on (4.6),that suitable choices of n-loop counterterms do the same in the 
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the n-loop approximation. To determine the renormalization parts of 

dimensions 5 3, we look at the four equations of Fig. 9. The double 

lines in Figs. 9 and 10 refer to external Q ‘i(r) lines. The relevant 

vertices that appear in Fig. 8 are &fined in Fig. 9. 

(a) Since Taa(p2) and L 
era vanish in the tree approximation, we 

have 

(b) We have 

-M2Jab +p2 r:b “,i” = 0 
I I 

(5.8) 

Consider, now the limit p2 - 0: we learn that 

lim 2 div 

I I 
LGa(p ) 

n = p2fLYF(p2) (5.9) 
2 

P +O 

and f@’ (p2) is convergent, because Laa(p2) has superficially D=O. 

@P Further, Eq. (5.8) tells us that I? o 
I I 

n is finite. 

(c) The first term on the left hand side is made finite by zcy and 

X ; the second term does not contribute to the left-hand side of (4.6) 
cy 

because both LQa and F abc 
vanish in the tree approximation; the last 

term does not contribute because L aPa and T aa 
EL 0 vanish in the tree 

approximation. Thus we have 

(5.10) 

n is made finite by x, 
en’ 

‘Writing 



we see thatH 
a 

(’ 

1 
6M2 ab(lr,Cr ;’ 
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e)is removed by ,s 
an’ and Fab(c) is removed by 

E) n satisfying (5. 5). 

(d) Repeating an analysis similar to (c) above, we find that 

This means that 

c c’ 

+ta 6 
cc’ aa’ 

6 
bb’) I 

a’dc’ 
(pqr) 

t 
“n’” = 0 (5. ii) 

I t 
r abc div 

n must be an invariant under G. But this is 

impossible unless 

-0 (5.12) 

because the group theoretic structure of r abc 
must be of the form 

I I 
r 

abc div 
n 

= Ad tabcd X const. (5.13) 

where Ad is the constant vector defined in (5. 2) and t abed 
IS a G-invariant 

tensor. [ Note that the terms which break the $ + - $ invariance in (5.2) 

are all proportional to c@ 
a’ ’ 

This concludes the proof that Zi(cr, O), 2 
cy 

(cr‘, 0), X (cr, 0) 
cz 

and 6M2(cr, cr) remove divergences from the perturbation series for 

proper vertices in the linear gauge specified by the two sets of parameters 

cr and cr after the vacuum expectation values of +a are duly taken into 

account, The question as to whether 5 M2(br, cr) is also independent of 

r 
C cannot be discussed meaningfully in the context of an unbroken theory 

because of the impossibility of defining the S-matrix. We shall return to 

this question after we discuss the renormalization of spontaneously broken 

theories. 
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VI. RENORMALIZATION OF SBGT 

This section is devoted to augmenting the discussion of LZII on 

the renormalizability of spontaneously broken gauge theories (SBGT), 

so as to make it applicable to arbitrary linear gauges. The Higgs 

mechanism 
20 

(for a historical review of the subject, see Ref. 21) 

takes place in general when the condition M2> 0 is violated. For the 

following discussion, it is convenient to keep in mind a comparison 

theory given by the same gr and A’, but with a positive definite Mi . 

Consider the effective action 

L eff Kr.cr>M;) +&lc; (6.1’ 

where y,‘s are finite constants. The vacuum expectation values of 

$ra of this theory, u,(y), are given by the solution of 

6rr = 7, (6. 2) 6a; 
8 =ur ,Br =0 

P 

satisfying the positivity condition that Tr be convex at Qr = u, BL = 0. 

Here Tr is the generating functional of proper vertices of the theory 

given by Leff(Mi). In perturbation theory, we may define 4’ (” by 

(6.3) 

U 
a 

=u 3-u +u +... 
a0 al a2 (6.4) 

and determine u aO by the condition that 
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= 7, (6. 5) 

t); =ua O,bp=O 

subject to the positivity condition, where L ’ eff 
is the effective action with all 

counterterms set equal to zero, and u an by the condition that the $’ tadpoles 

vanish in the n-loop approximation. 

It is easy to see that the proper vertices of the theory (6. 1) are 

rendered finite by the counterterms [ Zi(Mi) - 11 , [ Z@(Mi) - 11 , 

[Xu($) - iI , 6X($) and 6Mf(Mi) of the comparison theory Leff(Mi); 

The argument involved here is completely analogous 

the o- model, 22 (see also Ref. 23) and relies on the 

analysis. 
24 

Let us now consider the theory 

to that given for 

so-called spurion 

Leffd> cr, M2’ + c y, Gr a 
a 

(6.6) 

where M2 is no longer positive definite. The scalar propagators of the 

theory are of the form 

I 
[k2,j - M2 - PCd ucOudO -T+ Q?-‘Iab 

a 

= [k2 

I 
$ _ M; - PCdu c ’ u - 

CO d0 CL 
Q”l-’ ab 

1 

+I 
[k2 1 - M; - PCducOudO - c 

(6.7) 
4 Q”] -I ae 

Ly ICY 1 

x (M2-M;)ef - M2 - PCducOudO - 
c t 

a (Y 



-32- NAL-Pub-73/71-THY 

where u =u a0 a0 
(y. M2) are obtained from (6. 5) with Leff = Leff(M2), 

subject to the positivity condition (which guarantees that M2 + Puu 

+ i Q is positi ve semidefinite), and where P 
cd 

and Q@ are matrices 

acting on the scalar field indices. Now consider a renormalization 

part of the theory (6.16). If we substitute the right hand side of 

(6.7) for every scalar propagator in the diagram, there will result a 

number of terms. The first term, in which all scalar propagators 

are replaced by the first term on the right hand side of (6.7), is the 

corresponding renormalization part of a theory of the form (6.2) with a 

different set of v’s, [ because ucoappearing here is u 
CO 

(M2, y) and not 

u;~(M;. y). But we can choose y’s such that uco(M2, y) = u~~(M~~~)I , 

and this term is made finite by a counterterm of the comparison theory 

Leff(Mi), If the superficial degree of divergence D of the renor*alization 

part in question is zero, the rest of the terms are superficially convergent, 

and we require no more overall subtractions. If D is 2 (scalar self - 

energy), the terms in which only one scalar propagator is replaced by 

the second term on the right hand side of (6.7) are still logarithmically 

divergent, but this divergence is removed by a suitable choice of the 

mass counterterm 6 M2(M2, M,“, y): 

ha, 6 M2(,M2, M;, y)] ab = o (6.8) 

When we let y = 0, we have 

u,(y=O’ = ” 
CY 

vm k 0 
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and we have an (intermediately) renormalized SBGT. 

To recapitulate: a SBGT is renormalizable in any linear gauge 

( f, cr ) by the vertex and field renormalization transformations of a 

comparison unbroken theory Leff( 5’, cr, M,” >O) [also of L eff(f, 0, M;); 

See sect. 51 and a suitably chosen G-invariant mass counterterm 6M2(M2) = 

6M2(M; ) + SM2(M2, M;, y =O). It is to be noted 
25 

that in a linear 

gauge, the vacuum expectation values of + i.(r) are in general infinite 

and gauge dependent--they are not observables. This in no way implies 

the nonfiniteness of renormalized vertices, since the role of the infinite 

vacuum expectation values is precisely to cancel another infinity. 

VII. GAUGE INDEPENDENCE OF THE S-MATRIX 

Left so far unresolved is the question whether 6M2 is gauge 

dependent. To answer this question, we must consider the S-matrix. 

Fortunately for SBGT, at least in the presently contemplated applications 

to weak and electromagnetic interactions, it is possible to do so, because 

the infrared singularities of these models are no worse than that of 

quantum electrodynamics. 

Thus we adopt here the conventional (and perhaps unsatisfactory) 

tactics of assigning the photon a small mass p, and keeping it finite 

until physical quantities--cross sections, etc., --are computed, and 

then taking the limit p -0 accounting at the same time for the particular 

experimental setups in measurements. There is a problem, here, though 
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and it has to do with the introduction of the photon mass in a way not 

destroying the underlying nonabelian gauge symmetry. This one can 

do easily if the gauge group in question has an abelian factor group 

as in the Weinberg-Salam theory 26 simply by giving the abelian gauge 

boson a mass. In a theory such as the Georgi-Glashow theory, 
27 

the 

above option is not available, and one must invent some other ways-- 

for example, by including more (fictitious) scalar mesons as was done by 

Hagiwara. 
28 

Therefore, it sufficies to consider the case in which all physical 

particles are massive. We shall call a pole in the propagator of a 

regularized theory physical, if the location of the pole does not depend 

on the gauge fixing parameters 5 and c. What we have described in 

previous sections is an intermediate renormalization procedure, after 

which renormalized Green’s functions are finite. It is therefore possible 

to normalize asymptotic physical particle states to unity by final, finite 

multiplicative renormalizations. Henceforce Zi will refer to the complete 

renormalization constant when i refers to a physical particle. 

Let us choose a particular gauge (5:’ ci) and write the effective 

Lagrangian always in terms of renormalized fields and constants 

appropriate to this gauge. We recall the important conclusion5 which 

follows from (2.4); for the same Lagrangian, a change in the gauge 

fixing term has the same effect on Green’s functions as a change in the 

source term. In particular, this means that 
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A i(k; qr, cr; E ) = z& f, cr; $, c$ E ’ Ai& &‘o, c;; E ’ 

+ terms not having poles at k2=mF (7.1’ 

where Ai(k; Lr, cr; E ) is the full regularized propagator in the gauge 

($, cr ) for the physical field 4: as renormalized in the fiducial 

gauge (t$, ci). Since for physical particles the two propagators appearing 

on both sides of (7. 1) have the pole at the same value of k’=mf , the 

mass counterterm 6M‘ is the same in all gauges provided that the 

renormalization conditions for the scalar masses are expressed in 

terms of observables, i. e., “the physical mass of the stable particle i 

shall be mi”. One must give precisely as many conditions of this type 

as there are independent parameters in M2. 

The value of zi at k2=m: is the relative field renormalization 

constant: 

2r rr r zi(mi; 5 ,c ;SoPCo) = 

zi(f,cr’/Zi(+rg’ (7. 2) 

where Zi s are the complete renormalization constant in the respective 

gauges. The relative renormalization constant zi is in general infinite, 

except where Cr= $, because in the latter case both Zi s are relatively 

finite with respect to Zi( &‘, 0; Mt) of Sec. 5. 

The renormalized (with respect to external lines) physical T-matrix 

elements T are the same in all gauges 
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T(k%, k2> . . . > kn;Lr,cr) = T(ki,k2, . ..I k&.c;) (7.3) 

where 

T(kl,k2, . ..> kr$,cr). 

1 2 

[z,(f.C’;1’,,C’,)l’ 
(ki - m2) 1 

G(kl, k2> . . . , kn;&r;5;,c;), 

kl + k2 + 0.. , kn = 0 (7.4) 

and G(gr, cr:<k, L c ) is the momentum space Green’s function in the 

gauge (Lr, cr) where in the fields are renormalized with respect to the 

fiducial gauge. This was the main conclusion of LZIV. Now if we 

adopt the renormalization conditions that g is the value of the T-matrix 
Ly 

element fqr a particular trilinear coupling of three vector bosons, then it 

r 
[Za(f, cr ‘Zp( f, cr ‘Zy(f, cr ,I z 

is independent of ( Lr, cr ) where Ya( Lr, cr ) is the vertex renormalization 

constant which will meet the on-mass-shell renormalization condition, 

and the indices LY, p, and y refer to the same factor group. Note that the 

ratio in (7. 5) and 

x$ I 0 ’ I -- 
zy, O’~$O’ 

which appears in (3. 2) are relatively finite. A similar statement can be 
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made also for the quartic scalar couplings: with on-mass-shell 

renormalization conditions on these vertices, we find that 

E 1 + kr’-1 
abed 

6X abcd(gr,cr)][za($,cr) Zb(f/A 

is gauge independent. 

In conclusion, the renormalized S-matrix, starting from the same 

Lagrangian, is the same in all linear gauges. 
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FIGURE CAPTIONS 

Diagrammatic Representation of yq [ Q ] of Eq. (2. 19) 

Divergent subdiagram (shaded area) arising from the 

insertion of t!. in Fig. 1. 
U 

Definitions of proper vertices. See Eq. (4. 3). 

Definitions of proper vertices. See Eq. (4.4) 

The WT identity for proper vertices. .Z means 

summation over all partitions of NA+ NB-l external 

lines into two groups of NA and NB-i members each. 

The WT identities for renormalization parts in the 

R-gauge. 

Definitions of vertices appearing in Fig. 6. 

The WT identities for additional renormalization parts 

in linear gauges. 

Definitions of vertices appearing in Fig. 7. 
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